ConsistencyTTA

Accelerating Diffusion-Based Text-to-Audio Generation with Consistency Distillation

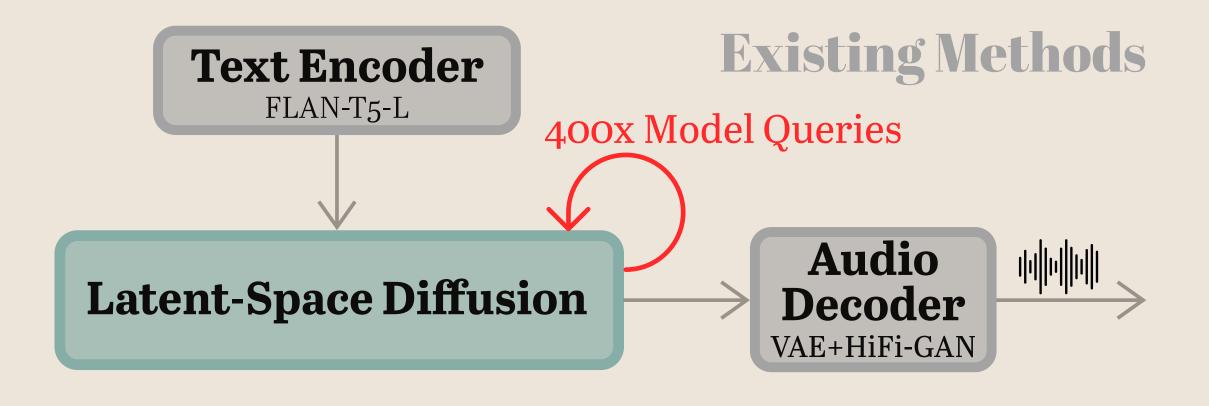
Yatong Bai, Trung Dang, Dung Tran, Kazuhito Koishida, Somayeh Sojoudi

consistency-tta.github.io

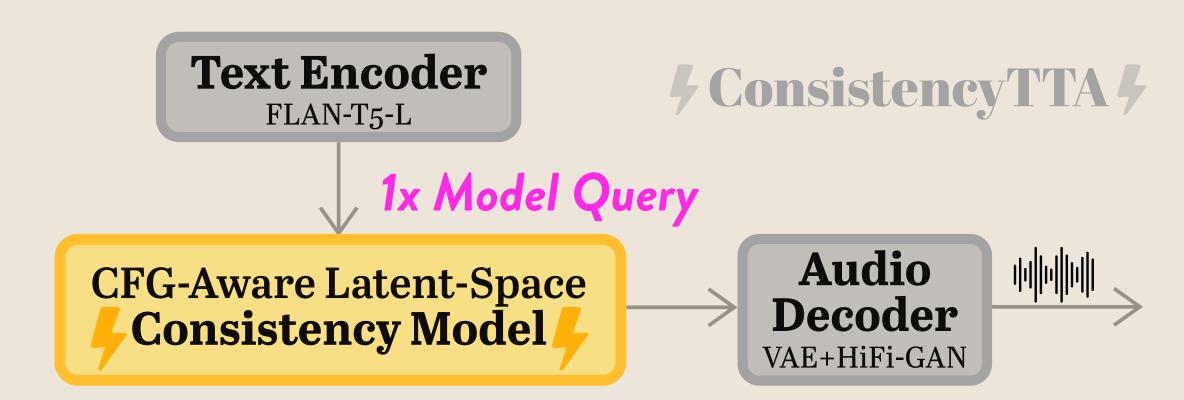
yatong_bai@berkeley.edu

Problem Statement

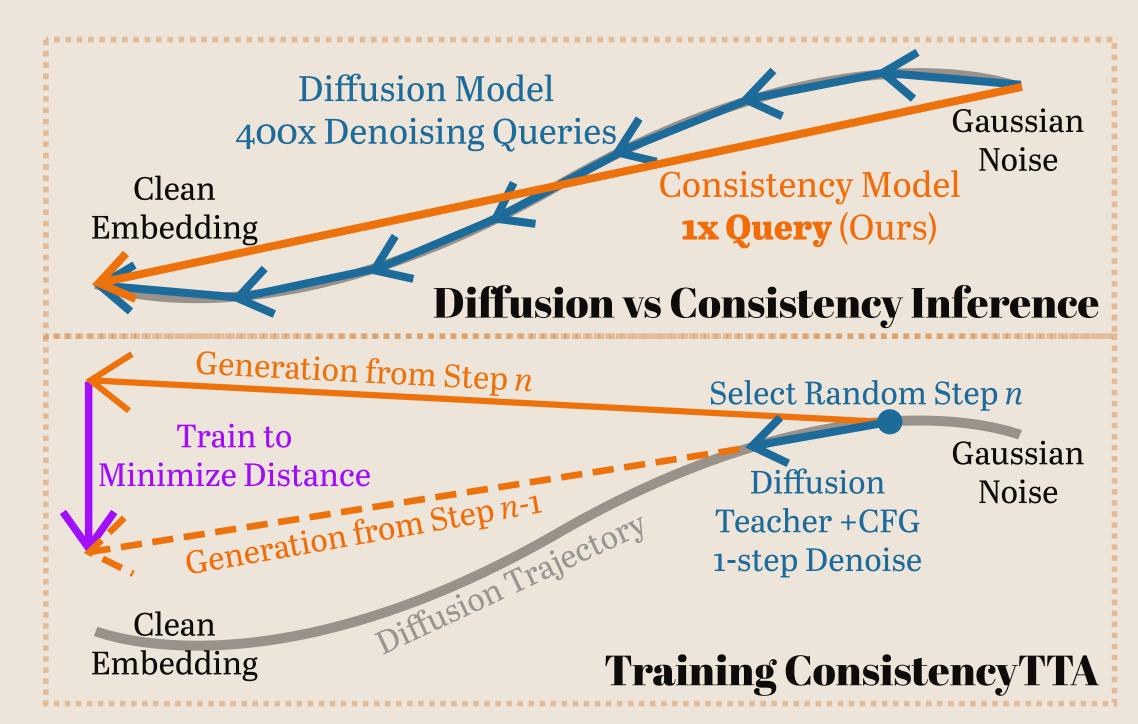
- **Diffusion model** is one of the most popular Text-to-Audio (TTA) methods.
 - Training: Add noise and train model to reverse the noise.
 - **Inference:** Start from pure noise and gradually denoise.
 - 400 Model Queries = **SLOW INFERENCE!**



Our Approach



- Consistency Model
 - Distilled from a teacher diffusion model (we use TANGO).
 - One-step high-quality generation from anywhere on diffusion trajectory.
- CFG-Aware Distillation
 - Classifier-free guidance (CFG):
 - An external operation that strengthens diffusion models.
 - ConsistencyTTA distills CFG into the model.
 - Add CFG weight embedding branch to student neural net, similar to timestep embed.
 - When querying teacher during distillation, apply a random CFG weight in [0, 6).
 - The same CFG weight is fed into the added student embedding branch.

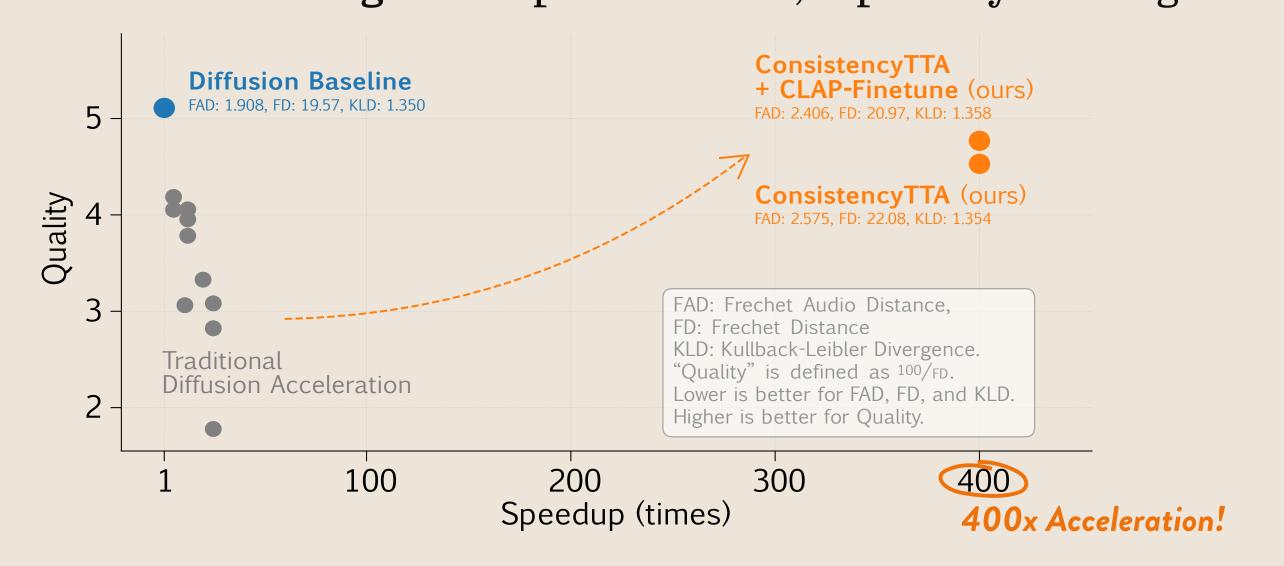


CLAP-Finetuning

- Single-step generation means differentiability.
- Hence, directly optimize generation quality objectives.
 - Cannot be done directly on diffusion models, thus an advantage of ConsistencyTTA.
- Finetune ConsistencyTTA to maximize CLAP score.
 - We consider CLAP score w.r.t. ground-truth audio and CLAP score w.r.t. text prompt.

Result Summary

- Fast high-quality audio generation with ONE SINGLE MODEL QUERY.
 - 99.75% less computation; 98.63% shorter wall time.
 - Runs locally on a laptop and still faster than diffusion model on A100 GPU, with similar generation quality.
 - Better performance than existing diffusion acceleration.
 - CLAP-Finetuning boosts performance, especially text alignment.



Experiments

- Setting: In-the-wild audio generation.
- Dataset: AudioCaps (YouTube video soundtracks + captions).
 - 45,260 training audio clips (10 seconds each); 882 validation clips.
 - Example prompts:
 - A telephone ringing with loud echo.
 A horn and then an engine revving.
- Evaluation Metrics:
 - Frechet Audio Distance (FAD) VGG-ish embeddings
- CLAP Score w.r.t. Prompt (CLAP_T)
 - Frechet Distance (FD) PANN embeddings
- CLAP Score w.r.t. Ground-Truth Audio (CLAPA)
- KL Divergence (KLD) PANN embeddings
- Human Subjective Quality & Prompt Alignment

Main Results:

	Model Queries ↓	Generation Time ↓	Subjective Quality	Subjective Text Align	CLAP _T ∱	CLAP _A û	FAD ↓	FD ↓	KLD ↓
AudioLDM-L (Baseline)	400	-	-	-	-	-	2.08	27.12	1.86
TANGO (Baseline)	400	168	4.136	4.064	24.10	72.85	1.631	20.11	1.362
ConsistencyTTA + CLAP-FT	1	2.3	3.830	4.064	24.69	72.54	2.406	20.97	1.358
ConsistencyTTA	1	2.3	3.902	4.010	22.50	72.30	2.575	22.08	1.354
Charmy d Thruth					26.71	100			

Table 1: Main Experiment Results. "Generation Time": minutes to generate the entire validation set.

- Ablation Studies on Distillation Setting with short training runs:
 - Distilling CFG into the model outperforms external CFG.
 - Training with random CFG weight is better than fixed weight.
 - Using Heun solver to query teacher is better than DDIM.
 - Uniform noise schedule is preferred over Karras.

Guidance Method	CFG Weight	Teacher Solver	Noise Schedule	FAD ∯	FD↓	KLD ↓
Unguided	1	DDIM	Uniform	13.48	45.75	2.409
External CFG	3	DDIM	Uniform	8.565	38.67	2.015
		Heun	Karras	7.421	39.36	1.976
CFG Distillation with Fixed Weight	3	Heun	Karras	5.702	33.18	1.494
			Uniform	3.859	27.79	1.421
CFG Distillation	4	Lland	Uniform	3.180	27.92	1.394
with Random Weight	6	Heun		2.975	28.63	1.378

Table 2. Ablation Studies on Distillation Settings.